Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 23(2): ar13, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437450

RESUMO

Stronger metacognitive regulation skills and higher self-efficacy are linked to increased academic achievement. Metacognition and self-efficacy have primarily been studied using retrospective methods, but these methods limit access to students' in-the-moment metacognition and self-efficacy. We investigated first-year life science students' metacognition and self-efficacy while they solved challenging problems, and asked: 1) What metacognitive regulation skills are evident when first-year life science students solve problems on their own? and 2) What aspects of learning self-efficacy do first-year life science students reveal when they solve problems on their own? Think-aloud interviews were conducted with 52 first-year life science students across three institutions and analyzed using content analysis. Our results reveal that while first-year life science students plan, monitor, and evaluate when solving challenging problems, they monitor in a myriad of ways. One aspect of self-efficacy, which we call self-coaching, helped students move past the discomfort of monitoring a lack of understanding so they could take action. These verbalizations suggest ways we can encourage students to couple their metacognitive skills and self-efficacy to persist when faced with challenging problems. Based on our findings, we offer recommendations for helping first-year life science students develop and strengthen their metacognition to achieve improved problem-solving performance.


Assuntos
Tutoria , Metacognição , Humanos , Estudantes , Estudos Retrospectivos , Autoeficácia , Resolução de Problemas
2.
CBE Life Sci Educ ; 22(1): ar2, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36525283

RESUMO

Our understanding of how active learning affects different groups of students is still developing. One group often overlooked in higher education research is students with disabilities. Two of the most commonly occurring disabilities on college campuses are attention-deficit/hyperactivity disorder (ADHD) and specific learning disorders (SLD). We investigated how the incorporation of active-learning practices influences the learning and self-advocacy experiences of students with ADHD and/or SLD (ADHD/SLD) in undergraduate science, technology, engineering, and mathematics (STEM) courses. Semistructured interviews were conducted with 25 STEM majors with ADHD/SLD registered with a campus disability resource center at a single university, and data were analyzed using qualitative methods. Participants described how they perceived active learning in their STEM courses to support or hinder their learning and how active learning affected their self-advocacy. Many of the active-learning barriers could be attributed to issues related to fidelity of implementation of a particular active-learning strategy and limited awareness of universal design for learning. Active learning was also reported to influence self-advocacy for some participants, and examples of self-advocacy in active-learning STEM courses were identified. Defining the supports and barriers perceived by students with ADHD/SLD is a crucial first step in developing more-inclusive active-learning STEM courses. Suggestions for research and teaching are provided.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Deficiências da Aprendizagem , Humanos , Aprendizagem Baseada em Problemas , Estudantes , Matemática , Tecnologia/educação
3.
CBE Life Sci Educ ; 21(3): ar58, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35998162

RESUMO

Stronger metacognition, or awareness and regulation of thinking, is related to higher academic achievement. Most metacognition research has focused at the level of the individual learner. However, a few studies have shown that students working in small groups can stimulate metacognition in one another, leading to improved learning. Given the increased adoption of interactive group work in life science classrooms, there is a need to study the role of social metacognition, or the awareness and regulation of the thinking of others, in this context. Guided by the frameworks of social metacognition and evidence-based reasoning, we asked: 1) What metacognitive utterances (words, phrases, statements, or questions) do students use during small-group problem solving in an upper-division biology course? 2) Which metacognitive utterances are associated with small groups sharing higher-quality reasoning in an upper-division biology classroom? We used discourse analysis to examine transcripts from two groups of three students during breakout sessions. By coding for metacognition, we identified seven types of metacognitive utterances. By coding for reasoning, we uncovered four categories of metacognitive utterances associated with higher-quality reasoning. We offer suggestions for life science educators interested in promoting social metacognition during small-group problem solving.


Assuntos
Disciplinas das Ciências Biológicas , Metacognição , Humanos , Aprendizagem , Resolução de Problemas , Estudantes
4.
CBE Life Sci Educ ; 21(1): ar3, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34941361

RESUMO

To support Black students in earning undergraduate science degrees, faculty need to understand the mechanisms that Black students use to succeed. Following an anti-deficit achievement approach, we used the community cultural wealth framework to investigate the strengths that Black undergraduates bring to their science majors. Community cultural wealth consists of capital or "knowledge, skills, abilities, and contacts" that students of color can use in their education. Through participatory action research, we studied academically successful Black science majors in the final year of their undergraduate degrees at a research-intensive predominantly white institution (PWI; n = 34). We collected data using a demographic survey and two semistructured interviews. Three themes emerged from content and thematic analysis. First, Black science majors use their capital to navigate the racial climate at a PWI. Second, Black students use internal strengths as capital to succeed in their science majors at a PWI. Third, Black science majors create virtual and physical spaces where they can share their capital and thrive at a PWI. We use our results to offer suggestions for researchers and instructors who want to take action to support the success of Black science majors.


Assuntos
Docentes , Estudantes , Humanos , Grupos Raciais , Pesquisadores
5.
CBE Life Sci Educ ; 20(2): fe3, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33797282

RESUMO

Metacognition is awareness and control of thinking for learning. Strong metacognitive skills have the power to impact student learning and performance. While metacognition can develop over time with practice, many students struggle to meaningfully engage in metacognitive processes. In an evidence-based teaching guide associated with this paper (https://lse.ascb.org/evidence-based-teaching-guides/student-metacognition), we outline the reasons metacognition is critical for learning and summarize relevant research on this topic. We focus on three main areas in which faculty can foster students' metacognition: supporting student learning strategies (i.e., study skills), encouraging monitoring and control of learning, and promoting social metacognition during group work. We distill insights from key papers into general recommendations for instruction, as well as a special list of four recommendations that instructors can implement in any course. We encourage both instructors and researchers to target metacognition to help students improve their learning and performance.


Assuntos
Metacognição , Humanos , Aprendizagem , Resolução de Problemas , Estudantes , Habilidades para Realização de Testes
6.
CBE Life Sci Educ ; 20(2): ar17, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33769838

RESUMO

Self-advocacy is linked to the success and retention of students with disabilities in college. Self-advocacy is defined as communicating individual wants, needs, and rights to determine and pursue required accommodations. While self-advocacy is linked to academic success, little is known about how students with disabilities in science, technology, engineering, and mathematics (STEM) practice self-advocacy. We previously developed a model of self-advocacy for STEM students with attention-deficit/hyperactivity disorder (ADHD) and/or specific learning disabilities (SLD). Here, we use this model to examine what factors support or hinder self-advocacy in undergraduate STEM courses. We conducted semistructured interviews with 25 STEM majors with ADHD and/or SLD and used qualitative approaches to analyze our data. We found internal factors, or factors within a participant, and external factors, the situations and people, described by our participants, that influenced self-advocacy. These factors often interacted and functioned as a support or barrier, depending on the individuals and their unique experiences. We developed a model to understand how factors supported or hindered self-advocacy in STEM. Supporting factors contributed to a sense of comfort and security for our participants and informed their perceptions that accommodation use was accepted in a STEM course. We share implications for research and teaching based on our results.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Deficiências da Aprendizagem , Humanos , Deficiências da Aprendizagem/etiologia , Matemática , Estudantes , Tecnologia
7.
CBE Life Sci Educ ; 18(2): ar24, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31144572

RESUMO

Metacognitive regulation occurs when learners regulate their thinking in order to learn. We asked how introductory and senior-level biology students compare in their use of the metacognitive regulation skill of evaluation, which is the ability to appraise the effectiveness of an individual learning strategy or an overall study plan. We coded student answers to an exam self-evaluation assignment for evidence of evaluating (n = 315). We found that introductory and senior students demonstrated similar ability to evaluate their individual strategies, but senior students were better at evaluating their overall plans. We examined students' reasoning and found that senior students use knowledge of how people learn to evaluate effective strategies, whereas introductory students consider how well a strategy aligns with the exam to determine its effectiveness. Senior students consider modifying their use of a strategy to improve its effectiveness, whereas introductory students abandon strategies they evaluate as ineffective. Both groups use performance to evaluate their plans, and some students use their feelings as a proxy for metacognition. These data reveal differences between introductory and senior students, which suggest ways metacognition might develop over time. We contextualize these results using research from cognitive science, and we consider how learning contexts can affect students' metacognition.


Assuntos
Biologia/educação , Conhecimento , Aprendizagem , Estudantes , Autoavaliação Diagnóstica , Emoções , Feminino , Humanos , Metacognição , Resolução de Problemas
8.
Artigo em Inglês | MEDLINE | ID: mdl-29983848

RESUMO

Learning objectives communicate the knowledge and skills that instructors intend for students to acquire in a course. Student performance can be enhanced when learning objectives align with instruction and assessment. We understand how instructors should use learning objectives, but we know less about how students should use them. We investigated students' use and perceptions of learning objectives in an undergraduate science course at a public research university. In this exploratory study, students (n = 185) completed two open-ended assignments regarding learning objectives and we analyzed the content of their answers. We found that students used learning objectives in ways that reflected the recommendations of past and present instructors, suggesting that students are receptive to instruction on how to use learning objectives. Students generally found learning objectives to be useful because the objectives helped them to narrow their focus and organize their studying, suggesting that students may need additional help from instructors in order to self-direct their learning. Students who chose not to use learning objectives often found other resources, such as case studies covered in class, to be more helpful for their learning. Some of these students recognized that the concepts included in case studies and learning objectives overlapped, pointing to a benefit of alignment between instructional activities and learning objectives. These qualitative results provide the data necessary for designing a quantitative instrument to test the extent to which students' use of learning objectives affects their performance.

9.
CBE Life Sci Educ ; 16(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28495935

RESUMO

Students with awareness and control of their own thinking can learn more and perform better than students who are not metacognitive. Metacognitive regulation is how you control your thinking in order to learn. It includes the skill of evaluation, which is the ability to appraise your approaches to learning and then modify future plans based on those appraisals. We asked when, why, and how upper-division biology students evaluated their approaches to learning. We used self-evaluation assignments to identify students with potentially high metacognition and conducted semistructured interviews to collect rich qualitative data from them. Through content analysis, we found that students evaluated their approaches to learning when their courses presented novel challenges. Most students evaluated in response to an unsatisfactory grade. While evaluating study strategies, many students considered performance and learning simultaneously. We gained insights on the barriers students face when they try to change their approaches to learning based on their evaluations. A few students continued to use ineffective study strategies even though they were aware of the ineffectiveness of those strategies. A desire to avoid feeling uncomfortable was the primary reason they avoided strategies that they knew were more effective. We examined the behavioral change literature to help interpret these findings.


Assuntos
Biologia/educação , Aprendizagem , Metacognição , Estudantes , Humanos , Autoavaliação (Psicologia)
10.
CBE Life Sci Educ ; 14(2)2015.
Artigo em Inglês | MEDLINE | ID: mdl-25976651

RESUMO

Strong metacognition skills are associated with learning outcomes and student performance. Metacognition includes metacognitive knowledge-our awareness of our thinking-and metacognitive regulation-how we control our thinking to facilitate learning. In this study, we targeted metacognitive regulation by guiding students through self-evaluation assignments following the first and second exams in a large introductory biology course (n = 245). We coded these assignments for evidence of three key metacognitive-regulation skills: monitoring, evaluating, and planning. We found that nearly all students were willing to take a different approach to studying but showed varying abilities to monitor, evaluate, and plan their learning strategies. Although many students were able to outline a study plan for the second exam that could effectively address issues they identified in preparing for the first exam, only half reported that they followed their plans. Our data suggest that prompting students to use metacognitive-regulation skills is effective for some students, but others need help with metacognitive knowledge to execute the learning strategies they select. Using these results, we propose a continuum of metacognitive regulation in introductory biology students. By refining this model through further study, we aim to more effectively target metacognitive development in undergraduate biology students.


Assuntos
Biologia/educação , Avaliação Educacional , Metacognição , Estudantes , Humanos , Autoavaliação (Psicologia) , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...